Prion pathogenesis is unaltered in the absence of SIRPα-mediated "don't-eat-me" signaling
نویسندگان
چکیده
Prion diseases are neurodegenerative conditions caused by misfolding of the prion protein, leading to conspicuous neuronal loss and intense microgliosis. Recent experimental evidence point towards a protective role of microglia against prion-induced neurodegeneration, possibly through elimination of prion-containing apoptotic bodies. The molecular mechanisms by which microglia recognize and eliminate apoptotic cells in the context of prion diseases are poorly defined. Here we investigated the possible involvement of signal regulatory protein α (SIRPα), a key modulator of host cell phagocytosis; SIRPα is encoded by the Sirpa gene that is genetically linked to the prion gene Prnp. We found that Sirpa transcripts are highly enriched in microglia cells within the brain. However, Sirpa mRNA levels were essentially unaltered during the course of experimental prion disease despite upregulation of other microglia-enriched transcripts. To study the involvement of SIRPα in prion pathogenesis in vivo, mice expressing a truncated SIRPα protein unable to inhibit phagocytosis were inoculated with rodent-adapted scrapie prions of the 22L strain. Homozygous and heterozygous Sirpa mutants and wild-type mice experienced similar incubation times after inoculation with either of two doses of 22L prions. Moreover, the extent of neuronal loss, microgliosis and abnormal prion protein accumulation was not significantly affected by Sirpa genotypes. Collectively, these data indicate that SIRPα-mediated phagocytosis is not a major determinant in prion disease pathogenesis. It will be important to search for additional candidates mediating prion phagocytosis, as this mechanism may represent an important target of antiprion therapies.
منابع مشابه
CD20-selective inhibition of CD47-SIRPα “don't eat me” signaling with a bispecific antibody-derivative enhances the anticancer activity of daratumumab, alemtuzumab and obinutuzumab
Here, we report on a novel bispecific antibody-derivative, designated RTX-CD47, with unique capacity for CD20-directed inhibition of CD47-SIRPα "don't eat me" signaling. RTX-CD47 comprises a CD20-targeting scFv antibody fragment derived from rituximab fused in tandem to a CD47-blocking scFv. Single agent treatment with RTX-CD47 triggered significant phagocytic removal of CD20pos/CD47pos maligna...
متن کاملNovel CD47: SIRPα Dependent Mechanism for the Activation of STAT3 in Antigen-Presenting Cell
Cell surface CD47 interacts with its receptor, signal-regulatory-protein α (SIRPα) that is expressed predominantly on macrophages, to inhibit phagocytosis of normal, healthy cells. This "don't eat me" signal is mediated through tyrosine phosphorylation of SIRPα at the cytoplasmic ITIM motifs and the recruitment of the phosphatase, SHP-1. We previously revealed a novel mechanism for the activati...
متن کاملaling and Regulation lactin Receptor – Integrin Cross - Talk Mediated by SIRP α in R ast Cancer Cells
Downlo hormone prolactin (PRL) contributes to the pathogenesis of breast cancer in part through its activation of activated kinase 2 (Jak2)/signal transducer and activator of transcription 5 (Stat5), a PRL receptor (PRLr)– ted pathway dependent on cross-talk signaling from integrins. It remains unclear, however, how this crossmediated. Following PRL stimulation, we show that a complex between t...
متن کاملSIRPα-antibody fusion proteins stimulate phagocytosis and promote elimination of acute myeloid leukemia cells
CD47, expressed on a variety of tumor cells, confers immune resistance by delivering an inhibitory "don't eat me" signal to phagocytic cells via its myeloid-specific receptor SIRPα. Recent studies have shown that blocking the CD47-SIRPα axis with CD47-directed antibodies or antibody-derivatives enhances phagocytosis and increases antitumor immune effects. However, CD47 expression on healthy cel...
متن کاملProlactin receptor-integrin cross-talk mediated by SIRPα in breast cancer cells.
The hormone prolactin (PRL) contributes to the pathogenesis of breast cancer in part through its activation of Janus-activated kinase 2 (Jak2)/signal transducer and activator of transcription 5 (Stat5), a PRL receptor (PRLr)-associated pathway dependent on cross-talk signaling from integrins. It remains unclear, however, how this cross-talk is mediated. Following PRL stimulation, we show that a...
متن کامل